Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones
نویسندگان
چکیده
This novel underwater acoustic azimuth-elevation source localization scheme realizes the eigenstructure-based polynomial rooting procedure for an L-shaped uniformly spaced array of diversely oriented and possibly spatially co-located velocity hydrophones and an optional pressure hydrophone. A velocity hydrophone measures a Cartesian component of the acoustic particle velocity vector of the incident wavefield. At each uniformly spaced array grid, one or more co-located and diversely oriented velocity hydrophones and/or a pressure hydrophone are placed, with the number and orientations of velocity hydrophones possibly varying from grid position to grid position in some known prearranged manner. The diverse orientation of the velocity hydrophones, however, disrupts the Vandermonde array manifold structure in each of the two uniform-linear-array legs of the L-shaped array. Nonetheless, ingenuous mathematical manipulations proposed in this paper restore the disrupted Vandermonde algebraic structure, thereby permitting once again the use of polynomial rooting to estimate the directions of arrival. A proposed pairing procedure matches each source’s x-axis direction cosine estimate with its corresponding y-axis direction cosine estimate. Simulation results verify the efficacy of the proposed scheme.
منابع مشابه
Extended-Aperture Underwater Acoustic Multisource Azimuth/Elevation Direction-Finding Using Uniformly But Sparsely Spaced Vector Hydrophones
Aperture extension is achieved in this novel ESPRITbased two-dimensional angle estimation scheme using a uniform rectangular array of vector hydrophones spaced much farther apart than a half-wavelength. A vector hydrophone comprises two or three spatially co-located, orthogonally oriented identical velocity hydrophones (each of which measures one Cartesian component of the underwater acoustical...
متن کاملNear-field/far-field azimuth and elevation angle estimation using a single vector hydrophone
This paper introduces a new underwater acoustic eigenstructure ESPRIT-based algorithm that yields closed-form direction-of-arrival (DOA) estimates using a single vector hydrophone. A vector hydrophone is composed of two or three spatially co-located but orthogonally oriented velocity hydrophones plus another optional co-located pressure hydrophone. This direction finding algorithm may (under mo...
متن کاملA PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays
In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-se...
متن کاملSignal Subspace Techniques for Source Localization with Circular Sensor Arrays
Estimating the directions-of-arrival (DOAs) of propagating plane waves is a problem of interest in a variety of applications including radar, mobile communications, sonar, and seismology. The widely studied uniform linear array (ULA) can only provide estimates of source bearings relative to the array axis. A planar. array is required if estimates of source azimuth and elevation are required (2D...
متن کاملBeamforming and Angle-of-Arrival Estimation of Square Planar Antenna Array
This paper presents a dual-band planar antenna array for ISM band applications (2.4 GHz and 2.45 GHz). This antenna is proposed for indoor applications and enables adaptive beamforming and angle of arrival (AOA) estimation. An adaptive beamforming algorithm is applied for a planar antenna array, which is able to steer its main beam and nulls in azimuth and elevation planes over a wide frequency...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 47 شماره
صفحات -
تاریخ انتشار 1999